Leistungsverzeichnis des molekularpathologischen Labors

Institut für Pathologie Zweigpraxis Pathologie MVZ Köln-Merheim

Stand Juli 2025

Version 9

1	_	emeines	
	1.1	Dienstzeiten	
	1.2	Auskunft	
	1.3	Anforderung/ Probeneinsendung	
	1.4	Untersuchungsdauer	
	1.5	Befundung	3
2		nor-Diagnostik	
	2.1	Next Generation Sequencing (NGS) – Oncomine Focus	
	2.2	Next Generation Sequencing (NGS) – Oncomine BRCA	
	2.3	Next Generation Sequencing (NGS) – Oncomine Comprehensive Plus	
	2.4	Idylla Schnelltest – Hotspot Mutationen	
	2.5	Idylla Schnelltest – Fusionen	
	2.6	Idylla Schnelltest – MSI	10
	2.7	dPCR – ESR1	11
	2.8	dPCR – PIK3CA	12
	2.9	MDM2 FISH	13
	2.10	ALK/ROS-1 FISH	14
	2.11	Her-2/neu FISH	15
	2.12	FGFR-1 FISH	16
	2.13	cMET FISH	17
	2.14	NTRK FISH	18
3	Erre	gernachweise	19
	3.1	Nachweis von <i>M. tuberculosis</i> und anderen nicht tuberkulösen Mykobakterien	19
	3.2	Typisierung Mykobakterien	20
	3.3	Subtypisierung humane Papillomviren (HPV)	21
	3.4	Nachweis respiratorische Viren	22
	3.5	Nachweis neurotrope Erreger	23
	3.6	Nachweis respiratorische Viren Kassettentest	24
	3.7	Nachweis von SARS-CoV-2	25
	3.8	Nachweis von P. jirovecii	26
	3.9	Nachweis von Aspergillus Galaktomannan	27
	3.10	Panfungale/ panbakterielle PCR	28
	3.11	Nachweis von Akanthamöben	29
	3.12	Nachweis von Toxoplasma gondii	30

Version 9

1 Allgemeines

1.1 Dienstzeiten

Pathologie Köln-Merheim: Werktags 9:00 – 16:00 Uhr Molekularbiologisches Labor: Werktags 8:00 – 16:00 Uhr

1.2 Auskunft

Befundauskunft: 0221-8907 3280 Chefarztsekretariat

0221-8907 3281 Schreibbüro

<u>Auskunft zu Untersuchungsmethoden:</u> 0221-8907 13467 Prof. O. Schildgen

0221-8907 18887 Dr. V. Schildgen 0221-8907 18911 Dr. J. Lüsebrink

1.3 Anforderung/ Probeneinsendung

Die Anforderung von Untersuchungen durch das molekularpathologische Labor erfolgt über den Anforderungsschein der Pathologie. Proben werden mit einem eindeutig ausgefüllten Pathologie-Anforderungsschein an die Pathologie Köln-Merheim versandt. Proben können nicht bearbeitet werden, wenn die Zuordnung von Probe und Anforderungsschein durch fehlende Beschriftung/Aufkleber nicht erfolgen kann.

Erregernachweise werden nur nach pathologischer und/oder zytologischer Untersuchung und vorheriger Indikationsstellung durch einen Pathologien aus dem der Pathologie übersandten Material oder konsiliarisch durchgeführt.

Tests können an den bei den einzelnen Methoden angegebenen Materialien durchgeführt werden, an nicht aufgeführten Materialien nach Rücksprache.

1.4 Untersuchungsdauer

Befundberichte zur Erregerdiagnostik werden im Allgemeinen innerhalb einer Woche nach Probeneingang fertiggestellt. Verzögerungen ergeben sich ggf. durch notwendige zusätzliche Vorbehandlungen der Proben. In dringenden Notfällen kann der Erregernachweis innerhalb von 1-2 Werktagen durchgeführt und befundet werden. Die Untersuchungsdauer liegt bei den Genstatus-Überprüfungen über NGS im Allgemeinen bei 10 Werktagen. Ergebnisse der FISH-Analysen werden i.d.R. innerhalb von 7 Werktagen übermittelt.

1.5 Befundung

Die Befundung der vom Labor ermittelten Ergebnisse erfolgt über die zuständigen Pathologen. Wichtige Befunde werden vorab entweder telefonisch oder über einen schriftlichen Vorbefund mitgeteilt.

Die Datenübermittlung an das KIS erfolgt durchgehend während der Arbeitszeiten der Pathologie Köln-Merheim.

Das Laborpersonal ist nicht autorisiert, Informationen über laufende Untersuchungen an Dritte weiterzuleiten. Vom Pathologen freigegebene Befunde können nur über das Sekretariat der Pathologie Köln-Merheim erfragt werden.

Version 9

2 Tumor-Diagnostik

2.1 Next Generation Sequencing (NGS) – Oncomine Focus

2.1.1 Analyt

2 MAP2K1	ALK	LZIT		Fusionen 23 Gene	
	, ·	KIT	ABL1	FGFR2	
3 MAP2K2	AR	KRAS	ALK	FGFR3	
1 MET	BRAF	MET	AKT3	MET	
Q MTOR	CCND1	MYC	AXL	NTRK1	
S NRAS	CDK4	MYCN	BRAF	NTRK2	
PDGFRA	CDK6	PDGFRA	EGFR	NTRK3	
PIK3CA	EGFR	PIK3CA	ERBB2	PDGFRA	
RAF1	ERBB2		ERG	PPARG	
RET	FGFR1		ETV1	RAF1	
ROS1	FGFR2		ETV4	RET	
SMO	FGFR3		ETV5	ROS1	
8	FGFR4		FGFR1		
1	MET Q MTOR S NRAS PDGFRA PIK3CA RAF1 RET ROS1	MET BRAF MTOR CCND1 NRAS CDK4 PDGFRA CDK6 PIK3CA EGFR RAF1 ERBB2 RET FGFR1 ROS1 FGFR2 SMO FGFR3	MET BRAF MET MTOR CCND1 MYC NRAS CDK4 MYCN PDGFRA CDK6 PDGFRA PIK3CA EGFR PIK3CA RAF1 ERBB2 RET FGFR1 ROS1 FGFR2 SMO FGFR3	MET BRAF MET AKT3 MTOR CCND1 MYC AXL NRAS CDK4 MYCN BRAF PDGFRA CDK6 PDGFRA EGFR PIK3CA EGFR PIK3CA ERBB2 RAF1 ERBB2 ERG RET FGFR1 ETV1 ROS1 FGFR2 ETV4 SMO FGFR3 ETV5	

2.1.2 Methode

Next Generation Sequencing mit Hilfe des Ion Torrent S5 Systems von ThermoFisher

2.1.3 Beschreibung der Untersuchung

Nach Isolation von DNA und RNA aus dem eingesandten Gewebe wird eine Gen-Library erstellt. Die Library wird dann im Anschluss über eine klonale Amplifikation für die Sequenzierung vorbereitet. Nach der erfolgreichen Sequenzierung werden die Daten mit Hilfe der IonReporter Software analysiert.

2.1.4 Untersuchungsmaterial

Tumorgewebe (FFPE oder Frischmaterial)

Liquid Biopsy, Blut

2.1.5 Untersuchungsmenge

Mindestens ein Gewebeschnitt (15 µm) von eingebettetem Gewebe

1-10 ml Plasma/Serum oder 6-10 ml Vollblut (Vollblut muss stabilisiert werden, geeignete Blutröhrchen sind PAXgene Blood ccfDNA Tubes, BD Vacutainer (oder andere Primärblut-Röhrchen) mit EDTA oder Streck Cell-Free DNA BCT).

2.1.6 Befundung/Beurteilung

Mutation, Fusion oder Copy Number Variation in einem oder mehreren der untersuchten Gene

Keine Mutation, Fusion oder Copy Number Variation in untersuchten Genen.

Version 9

2.2 Next Generation Sequencing (NGS) - Oncomine BRCA

2.2.1 Analyt

BRCA1 und BRCA2

2.2.2 Methode

Next Generation Sequencing mit Hilfe des Ion Torrent S5 Systems von ThermoFisher

2.2.3 Beschreibung der Untersuchung

Nach Isolation von DNA und RNA aus dem eingesandten Gewebe wird eine Gen-Library erstellt. Die Library wird dann im Anschluss über eine klonale Amplifikation für die Sequenzierung vorbereitet. Nach der erfolgreichen Sequenzierung werden die Daten mit Hilfe der IonReporter Software analysiert.

2.2.4 Untersuchungsmaterial

Tumorgewebe, in Paraffin eingebettet oder Frischmaterial

Blut

2.2.5 Untersuchungsmenge

Mindestens ein Gewebeschnitt (15 µm) von eingebettetem Gewebe

6-10 ml Vollblut (Vollblut muss stabilisiert werden, geeignete Blutröhrchen sind PAXgene Blood ccfDNA Tubes, BD Vacutainer (oder andere Primärblut-Röhrchen) mit EDTA oder Streck Cell-Free DNA BCT).

2.2.6 Befundung/Beurteilung

Mutation in einem oder mehreren der untersuchten Gene Keine Mutation in untersuchten Genen

Version 9

2.3 Next Generation Sequencing (NGS) – Oncomine Comprehensive Plus

2.3.1 Analyt

Hotspot Gene CNVs							
	Hotspot Gene (87 Gene)				(43 Gene)		
AKT1	ESR1	, KI	Γ	PDGFRB	AKT1	FGFR4	
AKT2	EZH2	KNST	TRN	PIK3CA	AKT2	FLT3	
AKT3	FGFR1	KRA	\S	PIK3CB	AKT3	IGF1R	
ALK	FGFR2	MAG	OH	PPP2R1A	ALK	KIT	
AR	FGFR3	MAP	2K1	PTPN11	AR	KRAS	
ARAF	FGFR4	MAP	2K2	RAC1	AXL	MDM2	
AXL	FLT3	MAP	2K4	RAF1	BRAF	MDM4	
BRAF FOXL2		MAP	K1	RET	CCND1	MET	
BTK GATA2		MA	Χ	RHEB	CCND2	MYC	
CBL	CBL GNA11		MDM4		CCND3	MYCL	
CCND1)12	ROS1	CCNE1	MYCN	
CDK4	CDK4 GNAS		T	SF3B1	CDK2	NTRK1	
CDK6	H3F3A	MTC		SMAD4	CDK4	NTRK2	
CHEK2	HIST1H3	B MY	С	SMO	CDK6	NTRK3	
CSF1R	HNF1A	MYC	CN	SPOP	EGFR	PDGFRA	
CTNNB1	HRAS	MYD		SRC	ERBB2	PDGFRB	
DDR2	IDH1	NFE		STAT3	ESR1	PIK3CA	
EGFR	IDH2	NRA	4S	TERT	FGF19	PIK3CB	
ERBB2	JAK1	NTR		TOP1	FGF3	PPARG	
ERBB3	JAK2	NTR		U2AF1	FGFR1	RICTOR	
ERBB4	JAK3	NTR		XPO1	FGFR2	TERT	
ERCC2	KDR	PDGF	FRA		FGFR3		
	Fusionen				ersuchung Ex	one	
	(48 Gene)				1 Gene)		
ARID1A	FBXW7	PTEN	AKT2	FGFR1	NTRK2	RSPO2	
ATM	MLH1	RAD50	ALK	FGFR2	NTRK3	RSPO3	
ATR	MRE11	RAD51	AR	FGFR3	NUTM1	TERT	
ATRX	MSH2	RAD51B	AXL	FGR	PDGFRA		
BAP1	MSH6	RAD51C	BRAF	FLT3	PDGFRB		
BRCA1	NBN	RAD51D	BRCA1	JAK2	PIK3CA		
BRCA2	NF1	RB1	BRCA2	KRAS	PPARG		
CDK12	NF2	RNF43	CDKN2/		PRKACA		
CDKN1B	NOTCH1	SETD2	EGFR	MET	PRKACB		
CDKN2A	NOTCH2	SLX4	ERBB2	MYB	PTEN		
CDKN2B	NOTCH3	SMARCA4	ERBB4	MYBL1	RAD51B		
CHEK1	PALB2	SMARCB1	ERG	NF1	RAF1		
CREBBP	PIK3R1	STK11	ESR1	NOTCH1	RB1		
FANCA	PMS2	TP53	ETV1	NOTCH4			
FANCD2	POLE	TSC1	ETV4	NRG1	RET		
FANCI	PTCH1	TSC2	ETV5	NTRK1	ROS1		

Zusätzlich bietet das Panel die Möglichkeit zur Bestimmung der genomischen Instabilität (zur Bewertung der homologen Rekombinations-Defizienz (HRD)), der Tumor Mutational Burden (TMB) und der Mikrosatellitenstabilität bzw. –instabilität (MSS/MSI).

Version 9

2.3.2 Methode

Next Generation Sequencing mit Hilfe des Ion Torrent S5 Systems von ThermoFisher

2.3.3 Beschreibung der Untersuchung

Nach Isolation von DNA und RNA aus dem eingesandten Gewebe wird eine Gen-Library erstellt. Die Library wird dann im Anschluss über eine klonale Amplifikation für die Sequenzierung vorbereitet. Nach der erfolgreichen Sequenzierung werden die Daten mit Hilfe der IonReporter Software analysiert.

2.3.4 Untersuchungsmaterial

Tumorgewebe (FFPE oder Frischmaterial)

Blut

2.3.5 Untersuchungsmenge

Mindestens ein Gewebeschnitt (15 µm) von eingebettetem Gewebe

6-10 ml Vollblut (Vollblut muss stabilisiert werden, geeignete Blutröhrchen sind PAXgene Blood ccfDNA Tubes, BD Vacutainer (oder andere Primärblut-Röhrchen) mit EDTA oder Streck Cell-Free DNA BCT).

2.3.6 Befundung/Beurteilung

Mutation, Fusion oder Copy Number Variation in einem oder mehreren der untersuchten Gene.

Keine Mutation, Fusion oder Copy Number Variation in untersuchten Genen.

Version 9

2.4 Idylla Schnelltest - Hotspot Mutationen

2.4.1 Analyt

Die Idylla Assays decken je nach Assay (KRAS, NRAS-BRAF, BRAF oder EGFR) die in der Tabelle aufgeführten Hotspots ab:

KRAS	NRAS-BRAF	BRAF	EGFR
KRAS codon 12	NRAS codon 12	BRAF codon 600	EGFR codon 719
KRAS codon 13	NRAS codon 13		EGFR codon 858
KRAS codon 59	NRAS codon 59		EGFR codon 861
KRAS codon 61	NRAS codon 61		EGFR codon 790
KRAS codon 117	NRAS codon 117		EGFR codon 768
KRAS codon 146	NRAS codon 146		EGFR exon 19 deletionen
	BRAF codon 600		EGFR exon 20 insertionen

2.4.2 Methode

PCR-basierter vollautomatischer Kassettentest

2.4.3 Beschreibung der Untersuchung

Schnitte von FFPE-Gewebe oder Liquid-Biopsies werden direkt in Kartuschen des entsprechenden Testpanels gegeben und vollautomatisch im Idylla-Analyse-Gerät bearbeitet.

2.4.4 Untersuchungsmaterial

FFPE-Tumorgewebe

Blut

2.4.5 Untersuchungsmenge

Mindestens ein Gewebeschnitt (10 µm) von eingebettetem Gewebe

Mindestens 2 ml Vollblut (EDTA-, Citrat-, Heparin-Blutentnahmeröhrchen geeignet)

2.4.6 Befundung/Beurteilung

Mutation in einem oder mehreren der untersuchten Gene Keine Mutation in untersuchten Genen

Version 9

2.5 Idylla Schnelltest - Fusionen

2.5.1 Analyt

Der Idylla Gene Fusion Assay deckt alle in der Tabelle aufgeführten Fusionen ab:

ALK	ROS1	RET	MET	Expression Imbalance
EML4-ALK	CD74-ROS1	KIF5B-RET	MET Exon 14 skipping	ALK
KIF5B-ALK	SDC4-ROS1	CCDC6-RET		ROS1
HIP1-ALK	SLC34A2-ROS1			RET
KLC1-ALK	EZR-ROS1			
TPR-ALK	TPM3-ROS1			
TFG-ALK	GOPC-ROS1			
	LRIG3-ROS1			

2.5.2 Methode

PCR-basierter vollautomatischer Kassettentest

2.5.3 Beschreibung der Untersuchung

Schnitte von FFPE-Gewebe werden direkt in Kartuschen des entsprechenden Testpanels gegeben und vollautomatisch im Idylla-Analyse-Gerät bearbeitet.

2.5.4 Untersuchungsmaterial

FFPE-Tumorgewebe

2.5.5 Untersuchungsmenge

Mindestens ein Gewebeschnitt (10 µm) von eingebettetem Gewebe

2.5.6 Befundung/Beurteilung

Mutation in einem oder mehreren der untersuchten Gene Keine Mutation in untersuchten Genen

Version 9

2.6 Idylla Schnelltest - MSI

2.6.1 **Analyt**

Der Idylla MSI Test überprüft über den Nachweis von kurzen Homopolymerne in den Genen ACVR2A, BTBD7, DIDO1, MRE11, RYR3, SEC31A und SULF2 das Vorliegen einer Mikrosatteliten Instabilität (MSI).

2.6.2 Methode

PCR-basierter vollautomatischer Kassettentest

2.6.3 Beschreibung der Untersuchung

Schnitte von FFPE-Gewebe werden direkt in Kartuschen des entsprechenden Testpanels gegeben und vollautomatisch im Idylla-Analyse-Gerät bearbeitet.

2.6.4 Untersuchungsmaterial

FFPE-Tumorgewebe

2.6.5 Untersuchungsmenge

Mindestens ein Gewebeschnitt (15 µm) von eingebettetem Gewebe

2.6.6 Befundung/Beurteilung

MSI - Mikrosatteliten-Instabilität

MSS – Mikrosatteliten-Stabilität

Version 9

2.7 dPCR - ESR1

2.7.1 Analyt

Die ESR1-Testung wird primär zur Abklärung einer Resistenz gegen die endokrine Therapie bei fortgeschrittenem oder metastasiertem hormonrezeptorpositivem (HR+) und HER2-negativem (HER2-) Mammakarzinom eingesetzt.

Mit Hilfe des QIAcuity ESR1 Assay können folgende Mutationen im ESR1-Gen nachgewiesen werden:

- c.1138G>C/p.E380Q
- c.1387T>C/p.S463P
- c.1388C>T/p.S463F
- c.1388C>G/p.S463C
- c.1607T>C/p.L536P
- c.1607T>C/p.L536R

- c.1607T>A/p.L536H
- c.1609T>A/p.Y537N
- c.1610A>G/p.Y537C
- c.1610A>C/p.Y537S
- c.1613A>G/p.D538G

2.7.2 Methode

dPCR mit Hilfe des QIAcuity Systems

2.7.3 Beschreibung der Untersuchung

Schnitte von FFPE-Gewebe werden direkt in Kartuschen des entsprechenden Testpanels gegeben und vollautomatisch im Idylla-Analyse-Gerät bearbeitet.

2.7.4 Untersuchungsmaterial

Liquid Biopsy

FFPE-Tumorgewebe

2.7.5 Untersuchungsmenge

Mindestens ein Gewebeschnitt (15 µm) von eingebettetem Gewebe Mindestens 4 ml Serum. Nach Möglichkeit bitte zwei Röhrchen mit stabilisierten Blut (Übersendung in cfDNA Blutröhrchen) einsenden.

2.7.6 Befundung/Beurteilung

Mutation

Keine Mutation

Version 9

2.8 dPCR - PIK3CA

2.8.1 Analyt

Die Indikation für eine PIK3CA-Testung ergibt sich primär bei fortgeschrittenen oder metastasierten Brustkrebserkrankungen, insbesondere bei hormonrezeptor-positiven und HER2-negativen Tumoren. Auch bei kolorektalen Karzinomen und nicht-kleinzelligem Lungenkrebs kann die Testung relevant sein. Die Untersuchung kann zur Identifizierung von Patienten dienen, die von zielgerichteten Therapien mit PI3K-Inhibitoren, profitieren könnten. Zusätzlich kann die PIK3CA-Mutation auch prognostische Bedeutung haben und bei anderen Tumorentitäten in Betracht gezogen werden.

Mit Hilfe des QIAcuity PIK3CA Assay können folgende Mutationen im PIK3CA-Gen nachgewiesen werden:

- c.1258T>C/p.C420R
- c.1624G>A/p.E542K
- c.1633G>A/p.E545K
- c.1634A>C/p.E545A
- c.1634A>G/p.E545G
- c.1635G>T/p.E545D

- c.1636C>G/p.Q546E
- c.1637A>G/p.Q546R
- c.3139C>T/p.H1047L
- c.3140A>G/p.H1047R
- c.3140A>T7p.H1047Y
- •

2.8.2 Methode

dPCR mit Hilfe des QIAcuity Systems

2.8.3 Beschreibung der Untersuchung

Schnitte von FFPE-Gewebe werden direkt in Kartuschen des entsprechenden Testpanels gegeben und vollautomatisch im Idylla-Analyse-Gerät bearbeitet.

2.8.4 Untersuchungsmaterial

Liquid Biopsy

FFPE-Tumorgewebe

2.8.5 Untersuchungsmenge

Mindestens ein Gewebeschnitt (15 µm) von eingebettetem Gewebe Mindestens 4 ml Serum. Nach Möglichkeit bitte zwei Röhrchen mit stabilisierten Blut (Übersendung in cfDNA Blutröhrchen) einsenden.

2.8.6 Befundung/Beurteilung

Mutation

Keine Mutation

Version 9

2.9 MDM2 FISH

2.9.1 Analyt

MDM2-Gen.

Das Liposarkom ist ein seltener bösartiger Tumor des Weichteilgewebes (Sarkom), der feingewebliche Merkmale von Fettzellen oder Fettzellvorstufen aufweist. Mit einem Anteil von 16–18 % ist das Liposarkom nach dem malignen fibrösen Histiozytom das zweithäufigste Weichteilsarkom. Genetische Veränderungen sind häufig und betreffen unter anderem eine Region auf dem langen Arm des Chromosoms 12 (12q13-15) mit Amplifikation des MDM2-Gens (murine double minute oncogene) und des für die Cyclin-abhängige Kinase 4 codierenden Gens CDK4. Die damit einhergehende Überexpression der entsprechenden Gene kann auf RNA- und Proteinebene nachgewiesen werden und unter Umständen zur Abgrenzung sowohl gegenüber gutartigen Lipomen als auch anderen Weichteilsarkomen beitragen.

2.9.2 Methode

Fluoreszenz in situ Hybridisierung (FISH).

2.9.3 Beschreibung der Untersuchung

Das Vorkommen bestimmter Nukleinsäuresequenzen in Zellen oder Geweben kann mit Hilfe markierter DNA-Sonden durch in situ Hybridisierung nachgewiesen werden. Die Hybridisierung führt zur Duplexbildung zwischen im Untersuchungsgegenstand vorliegenden Sequenzen und der entsprechenden DNA-Sonde. Duplexbildung (mit Sequenzen der chromosomalen Region des MDM2-Gens und der alpha-Satelliten von Chromosom 12 im Untersuchungsmaterial) wird direkt über die Fluoreszenzmarkierung der Polynukleotide nachgewiesen.

2.9.4 Untersuchungsmaterial

FFPE-Tumormaterial

2.9.5 Untersuchungsmenge

1 Gewebeschnitt mit einer Schnittdicke von 3-5 µm. Es müssen mindestens 20 zusammenhängende Zellen des invasiven Tumorbereichs mit amplifizierten Signalen gezählt werden können.

2.9.6 Befundung/Beurteilung

Amplifiziert

Version 9

2.10 ALK/ROS-1 FISH

2.10.1 Analyt

ALK-Gen. Translokationen mit Beteiligung des ALK-Gens sind bei verschiedenen Tumoren von großer Bedeutung.

ROS1-Gen. Translokationen mit Beteiligung des ROS1-Gens sind bei verschiedenen Tumoren von großer Bedeutung.

2.10.2 Methode

Fluoreszenz in situ Hybridisierung (FISH).

2.10.3 Beschreibung der Untersuchung

Fluoreszenz in situ Hybridisierung. Das Vorkommen bestimmter Nukleinsäuresequenzen in Zellen oder Geweben kann mit Hilfe markierter DNA-Sonden durch in situ Hybridisierung nachgewiesen werden. Die Hybridisierung führt zur Duplexbildung zwischen im Untersuchungsmaterial vorliegenden Sequenzen und der entsprechenden DNA-Sonde. Die Duplexbildung wird direkt über die Fluoreszenzmarkierung der Polynukleotide

2.10.4 Untersuchungsmaterial

FFPE-Tumormaterial

2.10.5 Untersuchungsmenge

1 Gewebeschnitt mit einer Schnittdicke von 3-5 μ m. Es müssen mindestens 100 Zellen gezählt werden können.

2.10.6 Befundung/Beurteilung

Translokation

Keine Translokation

Version 9

2.11 Her-2/neu FISH

2.11.1 Analyt

Her2/neu (human epidermal growth factor receptor 2, erb-B2, c-erbB2) gehört zur Familie der epidermalen Wachstumsfaktorrezeptoren (EGF-Rezeptor). HER2/neu stimuliert die Zellproliferation über den RAS-MAP-Kinase-Weg und hemmt den programmierten Zelltod (Apoptose) über den mTOR-Signalweg. Her2/neu spielt eine wichtige Rolle in der Behandlung und Diagnostik des Mammakarzinoms (Brustkrebses). In etwa 20 % aller invasiven Mammakarzinome ist der Rezeptor stark überexprimiert. Damit ist seine Wirkung vervielfacht, was sich in einer schlechten Überlebensprognose, beziehungsweise einem vergleichsweise schlechteren Krankheitsverlauf, äußert. Ob der Krankheitsverlauf durch eine Her2/neu-Überexpression beeinflusst ist, kann mittels immunhistochemischer Methoden nachgewiesen werden. Die Feststellung der nachgewiesenen Überexpression wird mit "HER2-positiv" bezeichnet.

2.11.2 Methode

Fluoreszenz in situ Hybridisierung (FISH).

2.11.3 Beschreibung der Untersuchung

Das Vorkommen bestimmter Nukleinsäuresequenzen in Zellen oder Geweben kann mit Hilfe markierter DNA-Sonden durch in situ Hybridisierung nachgewiesen werden. Die Hybridisierung führt zur Duplexbildung zwischen im Untersuchungsmaterial vorliegenden Sequenzen und der entsprechenden DNA-Sonde. Die Duplexbildung (mit Sequenzen des ERBB2-Gens und der alpha-Satelliten von Chromosom 17) wird direkt über die Fluoreszenzmarkierung der Polynukleotide nachgewiesen.

2.11.4 Untersuchungsmaterial

FFPE Tumorgewebe

2.11.5 Untersuchungsmenge

Ein Gewebeschnitt mit einer Schnittdicke von 3-5 μm. Es müssen mindestens 20 zusammenhängende Zellen des invasiven Tumorbereichs mit amplifizierten Signalen gezählt werden können.

2.11.6 Befundung/Beurteilung

Amplifiziert

Version 9

2.12 FGFR-1 FISH

2.12.1 Analyt

FGFR1-Gen. Das FGFR1-Gen kodiert für einen Rezeptor des Wachstumsfaktors Fibroblast Growth Factor, kurz FGF. Liegt das Gen im Erbgut in mehr als vier Kopien, also in veränderter Form vor, werden die Tumoren von diesem Gen abhängig.

2.12.2 Methode

Fluoreszenz in situ Hybridisierung (FISH).

2.12.3 Beschreibung der Untersuchung

Das Vorkommen bestimmter Nukleinsäuresequenzen in Zellen oder Geweben kann mit Hilfe markierter DNA-Sonden durch in situ Hybridisierung nachgewiesen werden. Die Hybridisierung führt zur Duplexbildung zwischen im Untersuchungsgegenstand vorliegenden Sequenzen und der entsprechenden DNA-Sonde. Duplexbildung (mit Sequenzen des FGFR1-Gens und der alpha-Satelliten von Chromosom 8 im Untersuchungsmaterial) wird direkt über die Fluoreszenzmarkierung der Polynukleotide nachgewiesen.

Die eingesetzte Sonde besteht aus grün-markierten Polynukleotiden die gegen Sequenzen des FGFR1-Gens gerichtet sind, und orange-markierten Polynukleotiden, die gegen alpha-Satelliten-Sequenzen des Zentromers von Chromosom 8 gerichtet sind.

2.12.4 Untersuchungsmaterial

FFPE Tumorgewebe

2.12.5 Untersuchungsmenge

Ein Gewebeschnitt mit einer Schnittdicke von 3-5 μm. Es müssen mindestens 20 zusammenhängende Zellen des invasiven Tumorbereichs mit amplifizierten Signalen gezählt werden können.

2.12.6 Befundung/Beurteilung

Amplifiziert

Seite 17 von 30

Leistungsverzeichnis Molekularpathologie

Version 9

2.13 cMET FISH

2.13.1 Analyt

cMET-Gen. Der MET (Mesenchymal-epithelial Transition)-Rezeptor spielt vermutlich in zahlreichen Krebsarten eine Rolle. Wird er durch den Liganden Hepatocyte Growth Factor (HGF) aktiviert, dimerisieren die MET-Proteine. Dies löst wiederum eine Signalkaskade aus, an deren Ende Zellen zu Wachstum, Teilung und Streuung in andere Körperorgane angeregt werden. Bei einer Amplifikation des MET Gens erwies sich eine Therapie mit Crizotinib als erfolgversprechend. Das Wissen um die therapeutischen Optionen ermöglicht ein optimales Patientenmanagement.

2.13.2 Methode

Fluoreszenz in situ Hybridisierung (FISH).

2.13.3 Beschreibung der Untersuchung

Fluoreszenz in situ Hybridisierung. Das Vorkommen bestimmter Nukleinsäuresequenzen in Zellen oder Geweben kann mit Hilfe markierter DNA-Sonden durch in situ Hybridisierung nachgewiesen werden. Die Hybridisierung führt zur Duplexbildung zwischen im Untersuchungsgegenstand vorliegenden Sequenzen und der entsprechenden DNA-Sonde. Duplexbildung (mit Sequenzen des MET-Gens und der alpha-satelliten von Chromosom 7 im Untersuchungsmaterial) wird direkt über die Fluoreszenzmarkierung der Polynukleotide nachgewiesen

2.13.4 Untersuchungsmaterial

FFPE Tumorgewebe

2.13.5 Untersuchungsmenge

1 Gewebeschnitt mit einer Schnittdicke von 3-5 µm. Es müssen mindestens 20 zusammenhängende Zellen gezählt werden können.

2.13.6 Befundung/Beurteilung

Amplifiziert

Version 9

2.14 NTRK FISH

2.14.1 Analyt

Die Gene NTRK1, NTRK2 oder NTRK3 kodieren für die Rezeptortyrosinkinasen TRK (Tropomyosin receptor kinase) A, B und C. Chromosomale Translokationen der NTRK-Gene mit verschiedenen Translokationspartnern können zu Fusionsproteinen führen, die in verschiedensten Tumorentitäten das Tumorwachstum vorantreiben können. U.a. wurden NTRK-Translokationen als Treibermutationen im Darmkrebs, im schwarzen Hautkrebs, bei Sarkomen und nicht zuletzt beim nicht-kleinzelligen Lungenkarzinom (NSCLC) entdeckt. Die Häufigkeit solcher Translokationen differiert hierbei stark zwischen den einzelnen Tumorarten.

2.14.2 Methode

Fluoreszenz in situ Hybridisierung (FISH).

2.14.3 Beschreibung der Untersuchung

Fluoreszenz in situ Hybridisierung. Das Vorkommen bestimmter Nukleinsäuresequenzen in Zellen oder Geweben kann mit Hilfe markierter DNA-Sonden durch in situ Hybridisierung nachgewiesen werden. Die Hybridisierung führt zur Duplexbildung zwischen im Untersuchungsgegenstand vorliegenden Sequenzen und der entsprechenden DNA-Sonde. Die Duplexbildung wird direkt über die Fluoreszenzmarkierung der Polynukleotide nachgewiesen

2.14.4 Untersuchungsmaterial

FFPE Tumorgewebe

2.14.5 Untersuchungsmenge

1 Gewebeschnitt mit einer Schnittdicke von 3-5 µm. Es müssen mindestens 20 zusammenhängende Zellen gezählt werden können.

2.14.6 Befundung/Beurteilung

Amplifiziert

Version 9

3 Erregernachweise

3.1 Nachweis von *M. tuberculosis* und anderen nicht tuberkulösen Mykobakterien

3.1.1 Analyt

Mykobakterium tuberculosis und nicht tuberkulöse Mykobakterien

3.1.2 Methode

Real-time PCR.

3.1.3 Beschreibung der Untersuchung

Mit dem RealAccurate PCR Test wird über eine real-time PCR auf das Vorhandensein von *M. tuberkulosis* getestet. Der Test kann zwischen M. tuberkulosis und anderen nichttuberkulösen Mykobakterien unterscheiden, eine weiter Differenzierung ist nicht möglich.

3.1.4 Untersuchungsmaterial

BAL, Gewebe (fixiert und unfixiert)

3.1.5 Untersuchungsmenge

Mindestens 150 μl BAL, 1 Gewebeschnitt (15 μm) vom in Paraffin eingebetteten Gewebe (optimal: je nach Größe 3-8 Schnitte) oder ca. erbsengroßes Stück unfixiertes Gewebe.

3.1.6 Befundung/Beurteilung

Positiv M. tuberculosis Positiv nicht-tuberkulöse Mykobakterien Negativ

Version 9

3.2 Typisierung Mykobakterien

3.2.1 Analyt

- M. tuberculosis
- M. abscessus
- M. haemophilum
- M. fortuitum
- M. gordonae
- M. marinum/ ulcerans
- M. avium
- M. genavense
- M. simiae

- M. kansasii
- M. chelonae
- M. smegmatis
- M. xenopi
- M. chimaera
- M. malmoense
- M. scrofulaceum/ parascrofulaceum
- M. szulgai

3.2.2 Methode

PCR mit anschließender Amplifikat- Analyse über VisionArray-Chip.

3.2.3 Beschreibung der Untersuchung

Die Zielsequenzen werden initial mittels PCR amplifiziert und gleichzeitig mit Biotinmolekülen markiert. Anschließend hybridisieren die amplifizierten Sequenzen mit den komplementären DNA-Fängern auf dem VisionArray-Chip. Nach der Hybridisierung werden unspezifisch gebundene DNA-Fragmente durch stringente Waschschritte entfernt. Die spezifisch gebundenen Sequenzen werden durch eine sekundäre Bindung mit einem Streptavidin-Peroxidase-Konjugat und einer Färbung mit Tetramethylbenzidin visualisiert.

3.2.4 Untersuchungsmaterial

BAL, Gewebe (fixiert und unfixiert)

3.2.5 Untersuchungsmenge

Mindestens 150 μl BAL, 1 Gewebeschnitt (15 μm) vom in Paraffin eingebetteten Gewebe (optimal: je nach Größe 3-8 Schnitte) oder ca. erbsengroßes Stück unfixiertes Gewebe.

3.2.6 Befundung/Beurteilung

Positiv/ Angabe Typ/Subtyp Negativ

Version 9

3.3 Subtypisierung humane Papillomviren (HPV)

3.3.1 Analyt

HPV Subtypen 06, 11, 16, 18, 26, 31, 33, 35, 39, 40, 42, 43, 44, 45, 51, 52, 53, 54, 56, 58, 59, 61, 62, 66, 67, 68, 70, 73, 81, 82, 83, 89.

3.3.2 Methode

PCR mit anschließendem Streifentest.

3.3.3 Beschreibung der Untersuchung

Über PCR wird eine 65-bp große Region im L1 ORF amplifiziert. Die Typisierung des amplifizierten Fragments erfolgt über einen Streifentest durch Reverse Hybridisierung.

3.3.4 Untersuchungsmaterial

Gewebe (fixiert und unfixiert)

3.3.5 Untersuchungsmenge

1 Gewebeschnitt (15 μ m) vom in Paraffin eingebetteten Gewebe (optimal: je nach Größe 3-8 Schnitte) oder ca. erbsengroßes Stück unfixiertes Gewebe.

3.3.6 Befundung/Beurteilung

Positiv/ Angabe Typ/Subtyp Negativ

Version 9

3.4 Nachweis respiratorische Viren

3.4.1 Analyt

- Adenovirus
- Bocavirus
- Coronavirus SARS-CoV-2
- Coronavirus NL63/ HKU1*
- Coronavirus OC43
- Coronavirus 229E
- Coronaviurs MERS
- hMPV
- Influenza A
- Influenza A H1N1 pdm09

- Influenza B
- Parainfluenza 1-4
- Rhinovirus/Enterovirus*
- RSV A
- RSV B
- Bordetella pertussis
- Chlamydophila pneumoniae
- Legionella pneumophila
- Mycoplasma pneumophila

3.4.2 Methode

Qualitative Multiplex-PCR.

3.4.3 Beschreibung der Untersuchung

Der RespiFinder-Test ermöglicht den gleichzeitigen Nachweis von 22 respiratorischen Erregern. Der Nachweis der Erreger beginnt mit einer Prä-Amplifikation, die einen reversen Transkriptionsschritt mit einem PCR-Schritt kombiniert, um die Ziel-cDNA zu amplifizierten. Anschließend wird die Prä-Amplifikationsreaktion in zwei separaten Ansätzen mit den spezifischen Sonden und fluoreszenzmarkierten hybridisiert. Nach der anschließenden Ligation und Amplifikation erfolgt eine abschließende Schmelzkurvenanalyse über die Erreger identifiziert werden kann.

3.4.4 Untersuchungsmaterial

BAL, Rachenspülwasser, unfixierte Gewebebiopsien, in Paraffin eingebettetes Gewebe

3.4.5 Untersuchungsmenge

Mindestens 150 µl BAL, Mindestens ein Gewebeschnitt (15 µM) von eingebettetem Gewebe

3.4.6 Befundung/Beurteilung

Positiv/Negativ für die entsprechenden Erreger

Ein negatives Ergebnis bedeutet nicht unbedingt die Abwesenheit einer viralen oder bakteriellen Atemwegsinfektion; ein negatives Ergebnis sollte nicht als alleinige Grundlage für eine Diagnose, Behandlung oder andere Therapieentscheidungen verwendet werden. Ein positives Ergebnis schließt eine Koinfektion mit weiteren Pathogenen nicht aus. Das/die nachgewiesene/n Pathogen/e ist/sind unter Umständen nicht der eigentliche Krankheitsauslöser.

^{*} keine Unterscheidung zwischen Erregern

Version 9

3.5 Nachweis neurotrope Erreger

3.5.1 Analyt

- HHV1: Herpes simplex Virus (HSV-1)
- HHV2: Herpes simplex Virus (HSV-2)
- HHV3: Varizella-Zoster-Virus (VZV)
- HHV4: Ebstein-Barr-Virus (EBV)
- HHV5: Cytomegalovirus (CMV)
- HHV6
- HHV7
- HHV8
- Enterovirus
- Parechovirus
- Mumpsvirus (MuV)
- Masernvirus (MeV)

- Listeria monocytogenes
- Staphylococcus aureus
- Haemophilus influenzae
- Streptococcus pneumoniae
- Streptococcus agalactiae
- Neisseria meningitidis
- Borrelia burgdorferi s.l./ Borrelia miyamotoi*
- Escherichia coli K1
- Cryptococcus neoformans s.l.
- Cryptococcus gattii s.l.

3.5.2 Methode

Qualitative Multiplex-PCR.

3.5.3 Beschreibung der Untersuchung

Der MeningoFinder-Test ermöglicht den gleichzeitigen Nachweis von 22 Erregern. Der Nachweis der Erreger beginnt mit einer Prä-Amplifikation, die einen reversen Transkriptionsschritt mit einem PCR-Schritt kombiniert, um die Ziel-cDNA zu amplifizierten. Anschließend wird die Prä-Amplifikationsreaktion in zwei separaten Ansätzen mit den spezifischen Sonden und fluoreszenzmarkierten hybridisiert. Nach der anschließenden Ligation und Amplifikation erfolgt eine abschließende Schmelzkurvenanalyse über die Erreger identifiziert werden kann.

3.5.4 Untersuchungsmaterial

BAL, unfixierte Gewebebiopsien, Liquor, in Paraffin eingebettetes Gewebe

3.5.5 Untersuchungsmenge

Mindestens 150 µl BAL, mindestens ein Gewebeschnitt (15 µM) von eingebettetem Gewebe

3.5.6 Befundung/Beurteilung

Positiv/Negativ für die entsprechenden Erreger

Ein negatives Ergebnis bedeutet nicht unbedingt die Abwesenheit einer viralen oder bakteriellen Atemwegsinfektion; ein negatives Ergebnis sollte nicht als alleinige Grundlage für eine Diagnose, Behandlung oder andere Therapieentscheidungen verwendet werden. Ein positives Ergebnis schließt eine Koinfektion mit weiteren Pathogenen nicht aus. Das/die eigentliche nachgewiesene/n Pathogen/e ist/sind unter Umständen nicht der Krankheitsauslöser.

^{*} keine Unterscheidung zwischen Erregern

Version 9

3.6 Nachweis respiratorische Viren Kassettentest

3.6.1 Analyt

- Adenovirus
- Bocavirus
- Coronavirus NL63
- Coronavirus HKU1
- Coronavirus OC43
- Coronavirus 229E
- hMPV A/B*
- Influenza A
- Influenza A H1N1 pdm09
- Influenza H1

- Influenza H3
- Influenza B
- Parainfluenza 1-4
- Rhinovirus/Enterovirus*
- RSV A/B*
- SARS-CoV-2
- Bordetella pertussis
- Legionella pneumophila
- Mycoplasma pneumophila

3.6.2 Methode

Qualitative Multiplex-PCR.

3.6.3 Beschreibung der Untersuchung

Das QIAstat-Dx® Respiratory Panel ist ein qualitativer Test zur Analyse von nasopharyngealen Abstrichproben (nasopharyngeal swab, NPS) von Patienten mit Verdacht auf eine Atemwegsinfektion auf virale, parasitäre oder bakterielle Nukleinsäuren. Mit dem QIAstat-Dx Respiratory Panel können sowohl Trockenabstriche als auch Flüssigproben in Transportmedium untersucht werden.

3.6.4 Untersuchungsmaterial

Tupfer, Flüssigproben in Transportmedium

3.6.5 Untersuchungsmenge

300 µl flüssige Probe, 1 Tupfer (Copan FLOQSwabs)

3.6.6 Befundung/Beurteilung

Positiv/Negativ für die entsprechenden Erreger

Ein negatives Ergebnis bedeutet nicht unbedingt die Abwesenheit einer viralen oder bakteriellen Atemwegsinfektion; ein negatives Ergebnis sollte nicht als alleinige Grundlage für eine Diagnose, Behandlung oder andere Therapieentscheidungen verwendet werden. Ein positives Ergebnis schließt eine Koinfektion mit weiteren Pathogenen nicht aus. Das/die nachgewiesene/n Pathogen/e ist/sind unter Umständen nicht der eigentliche Krankheitsauslöser.

^{*} keine Unterscheidung zwischen Erregern

Version 9

Leistungsverzeichnis Molekularpathologie

3.7 Nachweis von SARS-CoV-2

3.7.1 Analyt SARS-CoV-2

3.7.2 Methode

Qualitative Realtime PCR

3.7.3 Beschreibung der Untersuchung

Bei der Diagnostik mittels Polymerase-Kettenreaktion (PCR) werden spezifische Bereiche aus dem Erregergenom amplifiziert. Die Detektion findet bei der Real-Time PCR mit Hilfe von Fluoreszenzfarbstoffen statt. Diese sind an Oligonukleotid-Sonden gekoppelt, die spezifisch an das PCR-Amplifikat binden. Die Detektion der Fluoreszenzintensitäten im Verlauf der Real-Time PCR ermöglicht den Nachweis der Produkte

3.7.4 Untersuchungsmaterial

Rachenspülwasser, BAL, Abstrichtupfer mit geeignetem flüssigen Transportmedium, andere Materialien nach Absprache

3.7.5 Untersuchungsmenge

Mindestens 150 µl flüssige Patientenprobe

3.7.6 Befundung/Beurteilung

Positiv

Version 9

3.8 Nachweis von P. jirovecii

3.8.1 Analyt

Pneumocystis jirovecii

3.8.2 Methode

Quantitative Realtime PCR

3.8.3 Beschreibung der Untersuchung

Bei der Diagnostik mittels Polymerase-Kettenreaktion (PCR) werden spezifische Bereiche aus dem Erregergenom amplifiziert. Die Detektion findet bei der Real-Time PCR mit Hilfe von Fluoreszenzfarbstoffen statt. Diese sind an Oligonukleotid-Sonden gekoppelt, die spezifisch an das PCR-Amplifikat binden. Die Detektion der Fluoreszenzintensitäten im Verlauf der Real-Time PCR ermöglicht den Nachweis der Produkte

3.8.4 Untersuchungsmaterial

BAL, in Paraffin eingebettetes Gewebe

3.8.5 Untersuchungsmenge

Mindestens 150 µl BAL, mindestens ein Gewebeschnitt (15 µM) von eingebettetem Gewebe

3.8.6 Befundung/Beurteilung

Positiv

Version 9

3.9 Nachweis von Aspergillus Galaktomannan

3.9.1 Analyt

Aspergillus Galctomannan Antigen

3.9.2 Methode

Doppel-Antikörper-Sandwich-Fluoreszenz-Immunchromatographie

3.9.3 Beschreibung der Untersuchung

Die Doppel-Antikörper-Sandwich-Fluoreszenz-Immunochromatographie kombiniert Elemente verschiedener immunologischer Methoden (Doppel-Antikörper-Sandwich-Prinzip, Fluoreszenz-Nachweis und Immunchromatographie). Die Proben mit Antigen und Antikörpern wandern durch eine Membran, an der spezifische Bindungsstellen für die Antikörper immobilisiert sind. Bildet sich auf der Membran ein Antigen-Antikörper-Sandwich aus dem nachzuweisendem Antigen, einem spezifischen Fänger-Antikörper und einem fluoreszenz-markiertem zweiten Antikörper, wandert dieses weiter zur Detektionszone, an der die Fluoreszenz gemessen wird.

3.9.4 Untersuchungsmaterial

BAL

3.9.5 Untersuchungsmenge

Mindestens 300 µl BAL

3.9.6 Befundung/Beurteilung

Positiv

Version 9

3.10 Panfungale/ panbakterielle PCR

3.10.1 Analyt

- Pilz-DNA allgemein
- Bakterien-DNA allgemein

Der allgemeine Nachweis von Pilz- oder Bakterien-DNA setzt keinen Verdacht auf einen bestimmten Erreger voraus. Er gibt ersten Aufschluss über Infektion mit Pilzen oder Bakterien.

3.10.2 Methode

Breitspektrum PCR mit anschließender Amplifikat-Analyse durch Gelelektrophorese

3.10.3 Beschreibung der Untersuchung

Über eine gegen konservierte Regionen im Pilzgenom (ITS-Region) bzw. Bakteriengenom (16S Untereinheit) gerichtete PCR werden Amplifikate gebildet, die im Anschluß über Gelelektrophorese aufgetrennt und detektiert werden können.

3.10.4 Untersuchungsmaterial

Abstriche, Spülwasser, unfixiertes Gewebe

3.10.5 Untersuchungsmenge

1 Abstrich, min. 150 µl Spülwasser, ca. erbsengroßes Stück Gewebe

3.10.6 Befundung/Beurteilung

Positiv

Version 9

3.11 Nachweis von Akanthamöben

3.11.1 Analyt

Akanthamöben.

3.11.2 Methode

Qualitative Realtime PCR.

3.11.3 Beschreibung der Untersuchung

Bei der Diagnostik mittels Polymerase-Kettenreaktion (PCR) werden spezifische Bereiche aus dem Erregergenom amplifiziert. Die Detektion findet bei der Real-Time PCR mit Hilfe von Fluoreszenzfarbstoffen statt. Diese sind an Oligonukleotid-Sonden gekoppelt, die spezifisch an das PCR-Amplifikat binden. Die Detektion der Fluoreszenzintensitäten im Verlauf der Real-Time PCR ermöglicht den Nachweis der Produkte

3.11.4 Untersuchungsmaterial

Abstriche, Spülwasser, unfixiertes Gewebe

3.11.5 Untersuchungsmenge

1 Abstrich, min. 150 µl Spülwasser, ca. erbsengroßes Stück Gewebe

3.11.6 Befundung/Beurteilung

Positiv

Version 9

3.12 Nachweis von Toxoplasma gondii

3.12.1 Analyt

Toxoplasma gondii

3.12.2 Methode

Qualitative Realtime PCR.

3.12.3 Beschreibung der Untersuchung

Bei der Diagnostik mittels Polymerase-Kettenreaktion (PCR) werden spezifische Bereiche aus dem Erregergenom amplifiziert. Die Detektion findet bei der Real-Time PCR mit Hilfe von Fluoreszenzfarbstoffen statt. Diese sind an Oligonukleotid-Sonden gekoppelt, die spezifisch an das PCR-Amplifikat binden. Die Detektion der Fluoreszenzintensitäten im Verlauf der Real-Time PCR ermöglicht den Nachweis der Produkte

3.12.4 Untersuchungsmaterial

Abstriche, Spülwasser, unfixiertes Gewebe

3.12.5 Untersuchungsmenge

1 Abstrich, min. 150 µl Spülwasser, ca. erbsengroßes Stück Gewebe

3.12.6 Befundung/Beurteilung

Positiv